
1440 

THEORETICAL AND EXPERIMENTAL INVESTIGATION 
OF THE FUNCTION OF THE WALL FLOW DEFLECTING RING. 
A GENERALIZED MATHEMATICAL MODEL FOR THE CASE 
OF A LARGE NUMBER OF DEFLECTING RINGS 

Krumm SEMKOv", Nikolai KOLEva, Vladimir STANEKb and Pavel MORAVECb 

a Central Laboratory 0/ Chemical Process Fundamentals, 
Bulgarian Academy 0/ Sciences, Sofia 1113, Bulgaria and 
b Institute 0/ Chemical Process Fundamentals, 
Czechoslovak Academy 0/ Sciences, 16502 Prague 6-Suchdol, Czechoslovakia 

Received May 30th, 1986 

Based on the probability theory considerations a probability density distribution function has 
been derived for the radius on which the liquid, upon hiting the wall flow deflecting ring, or an 
element of packing resting on it, is deflected and proceeds descending in a trickle bed column. 
The obtained probability density distribution function has been used in turn in the model des­
cribing the distribution of liquid in columns equipped with the wall flow deflecting rings. The 
ultimate goal is a reliable theory for optimization of the size and spacing of the wall flow deflecting 
rings in packed bed columns. 

The wall flow deflecting rings1 (WFDR) placed in the vicinity of the walls of packed 
bed columns in a given spacing can substantially reduce the fraction of liquid that 
flows down the surface of the wall in the form of the wall flow. This in turn consider­
ably improves conditions for interfacial transfer and makes the column performance 
independent of its diameter2. 

An earlier paper3 presented a mathematical model for the case of a single WFDR 
in the column and confirmed experimentally its adequacy. As the next step, the fol­
lowing paper4 presented the model for the case of a large number of WFDRs. A re­
current formula was obtained permitting, sequentially in a ring-to-ring manner, 
coefficients to be obtained of the solution determining the distribution of liquid 
in an arbitrary position in the column equipped with the WFDRs. In the model it 
was assumed that all liquid that hits a given WFDR drains from its inner circum­
ference. This assumption was found correct for the case of a single WFDR (ref.3) 
above which there was no packing. However, in case of the WFDRs located within 
the bed the wall flow deflected by the WFDR does not drain from the WFDR on its 
inner periphery, but, instead, it drains via the packing elements contacting directly 
the WFDR (ref.4). This was confirmed also by visual observation and caused that 
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the presented model was found inadequate4. The resulting effect of the WFDRs is 
thus stronger than predicted by the model. 

The aim of this paper is to present a mathematical model of the process of liquid 
flow distributions in the case of a large number of WFDRs taking into the account 
the interaction of the WFDRs with the neighbouring particles of the packing within 
the packed layer. 

THEORY 

The Mathematical Model of the Process 

The fundamentals of the mathematical model to be presented are identical with those 
published in ref.4. The principal equation governing the distribution of liquid in 
a packed column under axial symmetry is followings: 

a2f(r, z) + ! af(r, Z) = _of..."..(r_, Z--=-) 
ar2 r or az 

(1) 

and is solved for the boundary conditions of Kolal and Stanek6 : 

_ af~; Z) = B[f(r, Z) - CW], r = 1. (2) 

The solution then takes the following form: 

fer, Z) = Ao + LAn Jo(qnr) exp (-q~Z), (3) 
D 

where 

Ao = C/(l + C) (4) 

and where qn are roots of the following characteristic equation: 

(5) 

The coefficients An are determined from the initial condition, i.e. by the initial liquid 
distribution function y(r)' 

A - 2«q~/B) - 2C)2 fl () J ( ) d ( ) 
n - [«q~/B) _ 2C)2 + q~ + 4C] JMqn) / r r 0 qnr r. 6 
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It is now assumed that there is a large number of the WFDRs in the column 
spaced Zo apart. In the determination of the initial liquid distribution for, say, the 
(k + 1)-th WFDR, one has to take into account the interaction between the WFDR 
itself and the elements of the packing, i.e. the condition that the liquid is drained via 
the packing elements contacting the WFDR. Continuous line in Fig. 1 shows one 
of many possible positions of the element of the packing (in this case the Raschig 
ring) contacting the inner periphery of the WFD R. It is seen that the liquid is drained 
from the WFD R at the point A, flows down the surface of the packing element leaving 
it at its lowest point B at the distance BC from the periphery of the WFDR. Since 
the packing element contacting the WFDR may rest in an essentially arbitrary 
position it is clear that the distance BC may vary between zero and d (shown by 
dotted line). 

Keeping this in mind we can distinguish three zones on the profile of the initial 
distribution: a) For the interval of radius 0 ~ r < r 1 - d the initial distribution 
for the (k + l)-th WFDR is given by the sofution inEq. (3) for the k-th WFDR 
and Z = Zo; b) For the interval of radius r 1 - d ~ r ~ r1 the initial distribution 
is given as a superposition of the solution as in the case a) and the distribution of the 
density of irrigation f~k+1)(r), characterizing the distribution at the point B (see 
Fig. 1). c) For the interval of radius r 1 < r ~ 1 there is zero initial distribution 
(no irrigation). 

Since the draining of liquid from the WFDR realizes primarily under the action 
of surface tension forces at the point of contact A (see Fig. 1) it may be assumed 
that an packing elements contacting the WFDR carry the same amount of liquid 
but deliver this liquid into different positions with respect to the WFDR. Thus the 
amount of liquid reaching the differential interval dr (Fig. 1) will be 

dQ = QdN/N. (7) 

--G 
r, -d I r 

r= 1 
~----------------

FIG. 1 

A sketch of a single element of the packing 
contacting the deflecting ring; 1 column wall, 
2 (k + l)-th deflecting ring, 3 element of the 
packing (Raschig ring) 
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The ratio dN/N expresses the probability that the liquid will reach the zone of width 
dr: 

dN 
- = dcI>(r) = «p(r) dr , 
N 

where «p(r) represents the probability density of the radius r. 

(8) 

Considering Eqs (7) and (8) one obtains the following expressions for the density 
of irrigation fB(r): 

dQ Q(k+l) 
f~k+ I)(r) = -- = -- «p(r) . 

2r dr 2r 
(9) 

Thus the initial condition for the (k + l)-th WFDR shall be as follows: 

y(r Z) = f(k)(r Z) _ = , , Z-Zo 

n 

(11) 

for Z = 0 and rl - d ~ r ~ r 1 , 

y(r, Z) = 0, for Z = 0 and r1 < r ~ 1 . (12) 

In addition the mass balance mandates that 

(13) 

Using this balance one can determine the amount of liquid that hits the (k + l)-th 
WFDRas 

(14) 

Upon applying the initial conditions (10)-(12) to Eq. (6) and upon solving the 
integral as shown in ref.4 one obtains the following recurrent formula for the deter­
mination of the coefficients of the solutions (3) in the section of the packing below 
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the (k + I)-th WFDR: 

A(k+l) _ 2((q~/B) - 2C)2 {cr 1 J ( ) 
n - t((q~/B) _ 2CY + q~ + 4C] J~(qn) (1 + C) qn t qnrl + 

+ L rlA~) exp (-q~Zo) 2 1 2 [qrn Jo(qnrt) J1(qrn rl) - qn J O(qrn r t)Jt(qnr l)] + 
rn*n qrn - qn 

2 

+ A~k) exp (-q~Zo) r1 [J~(qnrl) + J;(qnfl)] + 
2 

1 [ Cr2 J (q r )] Jf! + 2 1 - ~ - 2rl LA~k) exp (- q~Zo) t n 1 <p(r)Jo(qnr) dr. (15) 
+ n qn r,-d 

The obtained expression in Eq. (15) appears to be the most general solution for 
a column with a large number of WFDRs. However, the expression contains the so 
far undetermined distribution of the probability density of the radius, <per), in the 
zone rl - d ~ r ~ rt. In the particular case of initial distribution of liquid given 
by the disc distributor of radius equal to the inner radius of the WFDR, the Eq. (15) 
transforms into the expression analogous to that published in ref.4 • 

The problem now reduces to one of determining the probability density distribu­
tion <per). This can be accomplished only via the theory of probability. 

The Probabilistic Model of Irrigation in the Zone of the WFDR 

Let us inspect now the vicinity of WFDR with a packing element (Raschig ring) 
resting on it in an arbitrary position. The situation is sketched in Fig. 2 in a plane 

Ii 
Ii +d-d 

r1 -d 

~r ~ 
1 

fer) 

a b 

FIG. 2 

Probabilistic model. a Scheme for the derivation; 1 column wall, 2 deflecting ring, 3 element 
of packing. b Typical course of the distribution of the probability density (r) 
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passing through the axis of the column. For simplicity we shall investigate the two­
-dimensional case assuming that the axis of the Rachig ring falls into the same plane. 

Consider now polar coordinates with the center at the point A where the packing 
contacts the periphery of the WFDR. All possible positions are then determined by 
two variables 1 and rx. The liquid flows down from the point B at a distance r from 
the column axis. From the standpoint of the radius r one can distinguish two zones: 
a) The zone r1 - d ~ ,. < r1 + b - d; i.e. in the whole interval of variables 1 
and rx the element of packing does not touch the column wall. b) The zone rl + 
b - d ~ r ~ rl; i.e. there exist combinations of I and rx for which the packing 
element touches the wall of the column. 

It is now useful to inspect the two cases separately. 

a) The zone 1"1 - d ~ r < r1 + [) - d. In this zone all possible positions of the 
packing element, in which this element drains liquid from the region of WFDR, 
are determined by the following intervals of variables I and rx: 

I E [0, dJ; rx E [nI2, nJ . (16) 

In addition, these two quantities are independent and may assume arbitrary values 
from the above shown intervals with equal probability (uniform distribution). 
Consequently, their probability distributions are as follows: 

qJ(J) = lid; qJ(rx) = 21n. (17) 

From the independence of 1 and rx there follows that their joint probability density 
distribution shall be 

(18) 

Upon changing to the cylindrical system of coordinates, with the coordinates rand 
Z relating to the axis of the column, we obtain: 

(19) 

where the Jacobian J is determined by8 

01 01 

or aZ1 

J = (20) 
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From the geometry considerations in Fig. 2 it is seen that 

r = r l - I sin IX 

Zl = I cos IX • (21) 

Upon determining the derivatives and substituting into Eq. (20) we obtain 

(22) 

Then from Eqs (18), (19) and (22) there follows that the joint probability density 
of rand Zl shall be 

(23) 

The probability density of the radius qJ(r) is determined by the integral 

(24) 

From the intervals of the quantities I and IX, Eq. (16), and from Eq. (21) there 
follows that in the zone rl - d ~ r < r 1 + f> - d we have 

(25) 

Thus upon solving the integral (24) we obtain 

qJ(r) = ~ In d + ~[d2 - (rt - r)2] . 
d 1t r1 - r 

(26) 

b) Zone r l + f> - d :? r ~ r i . In this zone one can distinguish two cases: 1) the 
values of I and IX are such that the packing element does not touch the column wall; 
2) the packing element touches the wall. 

In the first case I and IX are independent, while in the second case they depend one 
from another. The probability density, qJ(r), then takes the form 

(27) 

where the subscript 1 and 2 refer to the region of independence and dependence of I 
and IX respectively. 
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The probability density CPI(r) is determined analogously to the previous zone by 
the integral (24), with the only difference that the geometry of the problem (see Fig. 2) 
dictates that 

_ rl - r [2 ( )2] . Z 1 min - ..j d - r 1 + () - r , 
r l + () - r 

(28) 

Then 

When the element of packing touches the wall the quantities I and IX are con­
strained by a functional relationship. Thus r = r(l) and the result takes the form 
of a unidimensional random variable 

(30) 

The problem thus reduces to one of determining CP2(1) in the zone of contact with 
the wall, where this probability density is already nonuniform. To tackle this pro­
blem let us utilize the following considerations: 

The joint probability density cp(1, IX), when 1 and IX are dependent, is as follows 9 

(31) 

where cp(IX/I) designates conditional probability density of IX. 

Let us, for a given I, the limiting value of the angle, for which the packing element 
touches the wall, be a1 • Its value is determined by geometry considerations (see 
Fig. 2) as: 

. rl + () - r 
al = 1t - arcsin -' ---

d 

With respect to Eqs (24) and (31) we then get 

cpil) = cp(l, a) doc = - cp(a/I) da . f~1 1 f~1 

n/2 d n/2 

Wo know9 , however, that 
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Upon dividing the integral (33) into two parts by a limit txl> we get 

[
I cp( tx/I) dtx + fn cp( tx) dtx = 1 . 

n/2 ~I 

(35) 

Within the limits [txl' 1t] of the second integral, the packing element does not touch 
the wall and therefore cp(tx/l) = cp(tx) = 2/1t. Upon multiplying Eq. (35) by lid, put­
ting the second integral on the right hand side and considering Eqs (32) and (33) 
we receive 

[ ( )] 1 2 . r l + (j - r 
CP2 I r = - - - arCSIn . 

d 1td d 
(36) 

From the geometry considerations there follows that in case of the contact with the 
wall 

I = d(rl - r) and 
rl + (j - r 1

011 ____ db ____ 
or = (rt + (j - r)2 . 

(37) 

Then from Eqs (37) and (36), after substituting into Eq. (30), we obtain 

CP2 r = 1 - - arCSIn ---~- ~---. ( ) [ 
2 . r l + (j - rJ (j 

1t d Crt + (j - r)2 
(38) 

In this way, in accord with Eq. (27), the probability density cp(r) in the zone r1 + 
b - d ;£ r ;£ r 1 shall be 

cp(r) = ~_ In (rl + (j - r){ d + .J[ d2 - (rl - r)2]} + 
d 1t (rl - r) {d + .J[d2 - (rl + (j - r)2]} 

+ - - arCSIn . . [1 2 . rl + (j - rJ (j 

1t d (rl + (j - r)2 
(39) 

Typical profile of cp(r) for the whole interval r1 - d ;£ r ;£ rl' determined by the 
dependences (26) and (39), is shown in Fig. 2b. 

As already said in the derivation of the model the axis of the packing element is 
expected to fall into the plane passing through the column axis. In order to examine 
the effect of this simplification a three dimensional model has been considered, 
taking into account possible rotation of the packing element in the horizontal plane. 
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The model yielded a very cumbersome expressions while, on the other hand, the 
deviations did not exceed 2%. 

RESULTS 

In order to verify the above model the experiments from ref.4 were used. These 
experiments were carried out in a column 188·6 mm in diameter packed with Raschig 
rings 25 x 25 x 3 mm. Below the packing there was a collecting device consisting 
of 4 concentric segments delimited by radii summarized in Table I. 

Three configurations were investigated with two and three WFDRs spaced 100 
and 200 mm apart. Six parallel experiments were carried out for two densities of 

TABLE I 

Radii (mm) delimiting the collecting segments 

Designation of segment 
Radius 

Inner 

Outer 

TABLE II 
Results of experiments 

No. of No. of 
expo mm WFDR 

20 3 
20 3 
20 3 
20 3 

2 20 2 
2 20 2 
2 20 2 

2 20 2 
3 20 2 
3 20 2 
3 20 2 
3 20 2 

I 

o 
40·2 

ho 

100 
100 
100 
100 
100 
100 
100 

100 
200 
200 
200 
200 

II 

40'2 

55'3 

No. of 
segment 

I 
II 
III 
IV 
I 
II 
III 

IV 
I 
II 
III 
IV 
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III 

55-3 

88'9 

Ii 

1'38 
1·26 
0'87 
0·71 
1·27 
1·28 
0'83 

0'99 
1-18 
1·13 
0·81 
1'41 

IV 

88'9 

94'3 

Ii c 

1·28 
1'30 
0'84 
0'92 
1-18 
1'26 
0'86 

0'99 
1-16 
1'08 
0·76 
1-82 

B 

% 

8'0 
-2,8 

4'0 
-22,4 

7·5 
1-4 

-3'9 

0·0 
2·0 
4·4 
7·2 

-22,5 
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lrngation (1.67.10- 3 m3 j(m2s) and 3.3.10- 3 m3 j(m2s). In each case the width 
of the WFD R was 20 mm. 

The variance of reproducibility experiments was S~ = 0·0534 with the number 
of the degrees of freedom 52. 

The calculations were carried out on a digital computer. The integral in Eq. (i5) 
was evaluated with the aid of the Simpson rule. In region rl + ~ - d ~ r ~ rl 
the function behind the integral, Eq. (29), has a singularity as the limit of ((Jl(r) for r 

approaching rj goes to infinity. In order to avoid large errors during numerical 

oJ 
I 

0 02 04 

FIG. 3 

A comparison of computed and measured 
results for three deflecting rings 100 mm 
apart 

• 

121..--____ _ 

20 

f,f 

1-2f-__ ~0e-_-r-..., 

04 

I II 

o 02 04 

FIG. 4 

A comparison of computed and measured 
results for two deflecting rings 100 mm apart 

FIG. 5 

A comparison of computed and measured 
results for two deflectirg rings 200 mm apart 
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evaluation the following preliminary numerical test was carried out on the basis 
of the condition 

(40) 

Using parallel analytical and Simpson's numerical evaluation, the division of the 
interval of integration was determined, together with the approach to the limit r h 

for which the error of evaluation of the integral did not exceed 0'2%. 

The value of D in the calculations was taken3 equal 0·00235 m, B = 7·0 and C = 

= 1· 365 (ref. 1 0). For all experimental conditions the mean density of irrigation Ji.o 
in each collecting segment was evaluated. For the outermost segment (IV) the density 
of irrigation was computed on the basis of the flow rate into this segment plus the 
wall flow. 

The results of the calculations and the experiments are summarized in Table II. 
The same results are presented graphically in Figs 3 - 5 (black points indicate com­
puted mean density of irrigation, empty points indicate the experimental values). 
Continuous line in these figures indicates the distribution of local density of irriga­
tion as a function of radius. 

The residual variance is determined byll 

? 1 IP (J f)2 s- = -- n·· - . 
A P-li=l" ",e 

and for given results s1 = 0·090 with 11 degrees of freedom. 

From the Fischer criterion 11 

F = sllS~ = 1·69 < Fl-~f2 = 2·0. 

Then there follows that the model is adequate at the significance level (X = 0·1. 

LIST OF SYMBOLS 

A o, An 
B,C 
D 
dp 

d •. ~ dp/R 
F 

I ~ L/Lo 
J 
h 

ho 

coefficients in Eq. (3) 
dimensionless coefficients of boundary condition (2) 
coefficient of radial spread of liquid, m 
diameter of element of packing (Rashig ring), m 
dimensionless diameter of Raschig ring 
Fischer criterion 
dimensionless density of irrigation 
mean dimensionless density of irrigation 
height of packed section measured from lower WFDR, m 
WFDR spacing, m 
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J 
Jo, J t 
k 

L, Lo 
1= I'/R 
I' 
m 
N 
n 
p 

Q 

w 
Z =~ Dh/R2 

Zt = h/R 
70 =c, Dho/ R2 
IX 

)' 

0= t/R 
e 

Superscripts 

k 

Subscripts 

A 
c 

o 
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Jacobian, Eq. (20) 
Bessel function of the first kind, zero and first order 
index number of WFDR from the uppermost WFDR 
local and mean density of irrigation, m3/(m2 s) 
dimensionless length of the packing element outside the periphery of theWFDR 
length of the packing element outside the periphery of the WFDR, m 

summation index 
number of packing elements draining liquid from WFDR 
summation index; number of parallel experiments 
number of configurations per number of segments 
flow rate of liquid that hits WFDR 
roots of Eq. (5) 
column radius, m 
radius, m 
dimensionless radius 
dimensionless radius of inner periphery of WFDR 
estimate of variance 
width of WFDR, m 

dimensionless wall flow 
dimensionless coordinate of height 
dimensionless coordinate in Descartes system of coordinates 
dimensionless spacing of the WFDRs 
angle of inclination of axis of packing element in the vertical plane (Fig. 2) 
initial dimensionless density of irrigation distribution 
dimensionless width of the WFDR 
relative deviation of the experimental and calculated mean density of irrigation 
for the i-th segment, % 
distribution of probability density 
element of probability 

for the k-th WFDR 

residual variance 
calculated value 
for the i-th segment 
reproducibility variance 
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